Ấn phẩm:

Fuzzy optimization multi-objective clustering Ensemble model for multi-source data analysis

Xem mô tả

0

Xem & Tải

0

Tóm tắt
In modern data analysis, multi-source data appears more and more in real applications. Different data sources provide information about different data. Therefore, multi-source data linking is important to improve the processing performance. However, in practice multi-source data is often heterogeneous, un- certain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a universal machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of ac- curacy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source dataIn this paper, we pro- pose a new clustering ensemble method for multi-source data analysis. We call the fuzzy optimized multi-objective clustering ensemble method - FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clustering are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. Experiments were performed on benchmark data sets. The experimental results demonstrate the superior performance of the FOMOCE method compared with the existing clustering ensemble methods and multi-source clustering methods.
Mô tả
Năm xuất bản
2021
Tác giả
Lê, Thị Cẩm Bình
Phạm, Văn Nha
Ngô, Thành Long
Nhà xuất bản
Vui lòng sử dụng ứng dụng TMU DRM để tải/mượn tài liệu số

Thực thể liên kết

Kết quả tìm kiếm tác giả/Nhà nghiên cứu

Tìm kiếm của bạn không trả về kết quả. Bạn có gặp khó khăn khi thực hiện tìm kiếm? Hãy thử lại bằng cách đặt từ khóa tìm vào trong cặp dấu ngoặc kép